
MATH2050C Assignment 5

Deadline: Feb 11, 2025.

Hand in: 3.3. no. 5, 10; Suppl. Problems no. 1, 2.

Section 3.3 no. 3, 5, 7, 10.

Supplementary Problems

1. Show that the sequence {bn}, bn =
∑n

k=1
1
ka is convergent iff and only if a > 1. Hint:

Study b2n as in Example 3.3.3b in textbook.

2. Show that (a) xn = (1 + 1/n)n is strictly increasing and yn = (1 + 1/n)n+1 is strictly
decreasing. Hint: Try the Bernoulli inequality.

3. Show the limit of (1− 1/n)n as n→∞ is equal to 1/e. Hint: Use Problem 3 in Ex 4.

4. Prove that e is irrational. Hint: Use the inequality 0 < e−(1+1+ 1
2! +

1
3! +· · ·+

1
k!) <

1
k×k! .
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The exponential

The monotone convergence theorem gives a criterion for the existence of limits for sequences. It
is very useful especially when the limit is not easy to guess.

Theorem 5.1 Monotone Convergence Theorem An increasing sequence is convergent iff
it is bounded above. A decreasing sequence is convergent iff it is bounded below.

The proof is to show when an increasing sequence is bounded above, it converges to its supre-
mum (whose existence is ensured by the Order Completeness Property of R), see our textbook
for details. You can also fine some good applications of this theorem from the book.

The exponential e and π are the most fundamental constants in mathematics. e is defined as
the limit of an increasing sequence whose root lies on natural growth or compound interest.

Theorem 5.2 For a > 0, the sequence xn = (1 + a/n)n is strictly increasing and bounded from
above. Consequently,

lim
n→∞

(
1 +

a

n

)n
exists.

Proof By binomial theorem,

xn = 1 + n
a

n
+
n(n− 1)

2!

a2

n2
+ · · ·+ n(n− 1)(n− 2) · · · (n− k + 1)

k!

ak

k!
+ · · ·+ an

nn

= 1 + a+
1

2!

(
1− 1

n

)
a2 + · · ·+ 1

k!

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− k − 1

n

)
ak +

· · ·+ 1

n!

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− n− 1

n

)
an .

xn+1 is obtained by replacing the n’s in the formula above by n + 1. By a term by term
comparison, we see that xn < xn+1, that is, {xn} is strictly increasing. Next, from this formula
we also have

xn < 1 + a+
a2

2!
+ · · ·+ an

n!
.

Observe that for some large n0, a
n/n! ≤ (1/2)n for all n ≥ n0, hence

1+a+
a2

2!
+· · · an0−1

(n0 − 1)!
+
an0

n0!
· · · ≤ 1+a+

a2

2!
+· · · an0−1

(n0 − 1)!
+

1

2n0
+· · · = 1+a+

a2

2!
+· · · an0−1

(n0 − 1)!
+

2

2n0
.

It shows that 1 + a+
a2

2!
+ · · ·+ an

n!
is bounded by some M for all n. By Monotone Convergence

Theorem the limit of xn exists and is equal to its supremum.

For a ≥ 0, we define a function E(a) by setting

E(a) = lim
n→∞

(
1 +

a

n

)n
.

We also write e = E(1) and call it the exponential.

Theorem 5.3 For each k,

0 < e−
(

1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

k!

)
≤ 1

k × k!
.
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Proof From the proof above, for k < n,

0 <
(

1 +
a

n

)n
−
(

1 + a+
1

2!
a2 +

1

3!
a3 · · ·+ 1

k!
ak
)

<
ak

k!

(
a

k + 1
+

a2

(k + 2)(k + 1)
+

a3

(k + 3)(k + 2)(k + 1)
+ · · ·

)
<

ak

k!

(
a

k + 1
+

a2

(k + 1)2
+

a3

(k + 1)3
+ · · ·

)
=

ak

k!

a

k + 1

1

1− a/(k + 1)

=
ak+1

k!

1

k + 1− a
.

By letting n → ∞, we obtain the desired conclusion where strict inequality in both side still
holds. The result follows by taking a = 1.


